Here are the answer keys (solutions ) of CBSE 10 Mathematics question paper -2019 Section C
Section C
13.
A class teacher has the following absentee record of 40 students of a class for the whole term. Find the mean number of days a student was absent.
Solution:
Frequency distribution :Mean number of days a student was absent =14.1
14.
In Figure 2. PQ is a chord of length 8 cm of a circle of radius 5 cm. The tangents at P and Q intersect at point T. Find the length TP
Solution:
Join OQ
Let TP=x and TR =y
In OPT and OQT,
OP=OQ……………………………..Radii of the same circle
PT=QT………………………………Tangents from the same
OT = OT…………………………..Common side
OPT≅ OQT ……………..SSS postulate
So angle ∠PTR = ∠QTR …………………….CPCT……………1
Consider triangles, PRT and QRT
PT= QT……………………….Tangents from same point to a circle are equal
∠PTR = ∠QTR…………………….Proved in 1
TR=TR………………………Common side
So PRT ≅ QRT……………SAS
So ∠PRT=∠QRT………………..CPCT
But ∠PRT+∠QRT=180°…………Linear pair
So∠PRT=∠QRT=90°
OR⊥ PQ
Perpendicular from the centre bisects the chord.
∴ PR=QR= 4cm
Triangle OPR is also a right angle triangle
∴ PO² = PR² +OR²
OR² = PO² – PR²
= 5² – 4²
=9
OR=3 cm
So, triangle PRT is a right angles triangle.
PT²= TR² + PR²………Pythagoras theorem
x²=y² + PR²
x²=y² + 16……………………………3
OP⊥PT………Tangent is perpendicular to radius
∴ In triangle OPT
PT²= PO² +OT²……………………….Pythagoras theorem
(y+3)² = x² + 5²
∴ x²=(y+3)² – 5²…………………………..4
Comparing equation 3 and 4
y² + 16= (y+3)² – 5²
y² + 16= y²+6y+9-25
6y= 32
y=32/6= 16/3
x²=(16/3)² + 4²
=(256/9) + 16
= 400/9
x=√400/9
=20/3 cm
15.
A, B and C are interior angles of a triangle ABC. Show that
(i) sin[(B+C)/2]= cos A/2
(ii) If ∠A=90° , then find the value of tan[ (B+C)/2]
Solution:
(i)
In triangle ABC
∠A+∠B+∠C=180°
∠B+∠C=180°-∠A
Divide by 2
(∠B+∠C)/2= (180°-∠A)/2
(∠B+∠C)/2 = 90- (∠A)/2)
sin[(∠B+∠C)/2 ]= sin [ 90- (∠A)/2)]
sin[(∠B+∠C)/2 ]= cos (∠A)/2)…………….(sin(90-θ)= cosθ
(ii)
∠A=90°
∠A+∠B+∠C=180°………………. Angle sum property of triangle
∴ ∠B+∠C=90°
Divide by 2
(∠B+∠C)/2= 45°
tan [(∠B+∠C)/2]= tan 45°
=1
OR
If tan (A+B) = 1 and tan (A-b)= 1/√3 , 0<A+B<90° , A> B, then find the values of A and B
Solution:
tan(A+B)= 1
tan 45° =1
∴ (A+B) =45°…………………….1
tan (A-B)= 1/√3
tan 30°= 1/√3
(A-B) = 30°……………………….2
Solving equation 1 and 2
(A+B) =45°
(A-B) = 30°
———————-
2A=75°
A= 37.5°
Substitute A= 37.5° in A+B= 45°
37.5°+ B= 45°
B= 45° – 37.5°
=7.5°
A= 37.5° B=7.5°
16.
Prove that √3 is an irrational number.
Solution :
Let us assume √3 is a rational number.
So √3 can be expresses in the form of a/b where a and b are integers having no common factor and b≠ 0
∴ √3 = a/b
a= √3b
Squaring bot the sides
a² = 3b²…………………………..(1)
∴3 divides a²
⇒3 divides a
Let a = 3c, and c is an integer
Putting a = 3c in (1)
3b² = 9c² ⇒b² = 3c²
⇒ 3 divides b²
⇒ 3 divides b
Thus, 3 is common factor of and b.
But, this contradicts the fact that a and b have no common factor other than 1.
The contradiction arises by assuming that √3 is rational.
Hence ,√3 is rational.
OR
Find the largest number which on dividing 1251,9377 and 15628 leaves remainder 1,2 and 3.
Solution:
On dividing 1251, 9377 and 15628 the number leaves remainder, 1,2 and 3 respectively.
∴ the number divides 1251- 1= 1250
the number divides 9377-2=9375
the number divides 15628-3 =15625
The number is HCF(1250, 9375, 15625)
1250= 54 X 2
9375=55 X 3
15625=56
HCF((1250, 9375, 15625)= 54
∴ the number is 625
17.
Draw the graph of equations, x-y+1=0 and 3x+2y-12=0. Using the graph, find the values of x and y which satisfy both the equations.
Solution:
Equation (1)
x-y+1=0
∴ y= x+1
Equation (2)
3x+2y-12=0
3x+2y=12
2y=12-3x
y=(12-3x)/2
The graph:
The x and y values satisfying both the equations are :
x=2 and y =3
18.
Water in a canal , 6m wide and 1.5 m deep, is flowing with a speed of 10km/h. How much area will it irrigate in 30 minutes if 8 cm of standing water is needed.
Solution:
Width of the canal b =6m
Depth of the canal h =1.5 m
Speed of water in the canal l =10 km/h
i.e. length covered by water in 1hr= 10 km =10000m
∴ the volume of water flows in 1 hour = l X b X h
= 6 X 1.5 X 10000
So , volume of water flows in 30 minutes= (6 X 1.5 X 10000) /2 m³
=45000 m³
Same volume of water fills the field.
Height of the standing water in the field (h) = 8cm =0.08 m
Volume of water filled in the field = height X area = 45000 m³
Height X area = 45000
0.08 X Area = 45000
Area= 45000/0.08
= 562500 m²
Area irrigated in 30 minutes = 562500 m²
=56.25 hectare ( 10000 m² = 1 hectare )
19.
The perpendicular from A on side BC of triangle ABC meets BC at D such that DB= 3CD. Prove that
2 AB² = 2 AC² + BC².
Solution:
It is given,
DB = 3CD
BC= DB+ CD
= 3CD+ CD
= 4 CD
∴CD= BC /4…………………………(1)
DB= 3CD
DB = 3 BC/4…………………………(2)
Consider triangle ADC
∠ ADC = 90º
∴ AC² = AD² + CD²…………………… Pythagoras theorem
∴ AD²=AC² – CD²………………….(3)
Consider triangle ABD
∠ADB=90º
∴ AB² = AD² +DB²
AD² = AB² – BD²……………..(4)
From eqn(2) and eqn(3)
(AC²- CD²) = (AB² – BD²)
AC² – (BC/4)² = AB² -( 3BC/4)²
AC² – BC²/16 = AB²- 9BC²/16
(16 AC²- BC²)/16= (16 AB²-9BC²)/16
16 AC²- BC² = 16 AB² – 9BC²
16AC²= 16AB² – 8BC²
Dividing by 8
2AC² = 2AB² – BC²
2AB² = 2AC² + BC²
OR
AD and PM are medians of triangles ABC and PQR respectively where ABC∼ PQR. Prove that AB/PQ= AD/PM.
Solution:
∴BD=DC
PM is median of Δ PQR
∴QM=MR
Δ ABC∼ΔPQR
So,
AB/PQ= BC/QR
AB/PQ= (BC/2)/(QR/2)
AB/PQ= BD/QM………..(1)………Since 1/2 BC= BD, 1/2 QR= QM
In ΔABD and ΔPQM
∠B= ∠Q……………Given
AB/PQ= BD/QM………….Proved in (1)
∴ΔABD ∼ ΔPQM
20.
A chord of a circle of radius 14cm subtends an angle of 60°, at the centre. Find the area of the corresponding minor segment of the circle.(Use π= 22/7 and√3=1.73)
Solution:
Radius of the circle = 14 cm.
i.e. OA=OB=14 cm
Let the sector formed by OA and Ob is OAXB
Area of segment AXB= Area of sector OAXB- Area of ΔOAB………..(1)
Area of sector = (θ/360) X π r²
Area of sector OAXB= (60/360)x( 22/7)(14²)
=102.66cm²……………………………..(2)
In ΔAOB
AO= BO…………….Radii of same circle
∠OAB=∠ABO
∠OAB+∠ABO+∠AOB= 180º
∠OAB+∠ABO+60º= 180º………………………..∠AOB= 60º
∠OAB+∠ABO=120º
∴∠OAB=∠ABO=60º
So, ΔAOB is an equilateral triangle.
Area of equilateral triangle= (√3/4)side²
∴Area of ΔAOB = (√3/4) X 14²
=(1.73/4)X 14²
Area of ΔAOB =84.77 cm²…………………………………..(3)
From (1),(2) and (3)
Area of segment AXB=102.66cm²-84.77 cm²
=17.89 cm²
21)
Find the value of k such that the area of triangle ABC with A(k+1,1), B(4,-3) and C(7,-k) is 6 square units.
Solution:
Vertices of the triangle are A(k+1,1), B(4,-3) and c(7,-k)
Area of the triangle ABC= 6 units
We know,
Formula to Area of triangle = 1/2[x1(y2-y1) +x2(y3-y1)+x3(y1-y2)]
Area of triangle ABC= 1/2[(k+1)(-3+k)+4(-k-1)+7(1+3)]
=1/2[-3k-3+k² +k-4k-4+28]
= 1/2(k²-6k +21)
1/2(k²-6k +21)= 6…………………….Given
k²-6k +21=12
k² – 6k +9=0
k² -3k – 3k +9=0
k(k-3)-3(k-3)=0
(k-3)(k-3)=0
k-3=0
∴k=3
22.
If 2/3 and -3 are the zeroes of the polynomial ax² +7x+b, then find the values of a and b.
Solution :
Let p(x)=ax² +7x+b
2/3 is zero of p(x)
∴p(2/3)=0
i.e. a(2/3)² + 7X (2/3) +b=0
a(4/9) + 14/3 +b=0
(4a+42+9b)/9=0
4a+9b=-42…………………………..(1)
-3 is zero pf p(x)
∴p(-3)=0
a(-3)² +7 X -3 +b=0
9a+b=21………………………….(2)
Solving eqn(1) and (2)
4a+9b=-42
9a+b=21
Multiplying eqn (2) by 9
4a +9b=-42
81a +9b=189
(-) (-) (-)
—————-
-77a= -231
a=-231/-77
a=3
Substituting a=3, in eqn(1)
4a +9 b=-42
4X3 +9b= -42
9b= -42-12
=-54